Current Issue : April-June Volume : 2023 Issue Number : 2 Articles : 5 Articles
Coordinated reaching and grasping movements may be impaired in patients with poststroke hemiplegia. Patients frequently adopt compensatory strategies, which require investigation. This pilot study used kinematic parameters to examine compensatory strategies by assessing the reach-to-grasp-pen movements in patients with stroke and unaffected participants. Twelve patients with stroke with mild impairment (45.1612.62 years, 2.411.97 months), twelve with moderate impairment (50.4112.92 years, 3.833.58 months), and ten healthy individuals (20.60.69 years) performed a reach-to-grasp-pen task. Kinematics parameters of upper limb and fingers, such as movement time, number of movement units, index of curvature, spectral arc length, trunk forward transition, trunk lateral transition, elbow extension, shoulder flexion, shoulder abduction, trunk rotation, arm-plane angle, the joint angles of interphalangeal joints of the thumb, index, middle, ring, and little fingers were examined in the study. These parameters were evaluated with two Microsoft Azure Kinect and Leap Motion, which belong to markerless motion capture systems. Patients with stroke showed longer reaching movement time, less smooth movement trajectories, and more trunk rotation (P < 0:05). In patients with stroke, the metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) of the thumb were flexed in the starting position; the MCP and PIP joints of the index finger in the stroke group were more extended during pen grasp; the range of motion of the MCP of the middle finger and the PIP joints of the middle, ring, and little fingers became greater, suggesting a larger peak aperture (P < 0:05). The more significant extension was observed in the index finger at the end of the grasp, suggesting inadequate flexion (P < 0:05). In clinical practice, the reach-to-grasp-pen task using markless sensing technology can effectively distinguish patients with stroke from healthy individuals and evaluate the recovery and compensation strategies of upper limb and hand functions. It can potentially become an evaluation tool in hospital and community scenes. Accurate identification of abnormal trunk, arm, and finger strategies is crucial for therapists to develop targeted upper limb treatment methods and evaluate treatment effects....
The aim of this study was to analyse the cytocompatibility of Surefil One (SuO) with respect to the release of monomers from the material. The following reference materials were chosen: SDR Flow Plus (SDR, Dentsply Sirona, Konstanz, Germany), One Q Bond (Q, Dentalica, Milan, Italy), and Ketac (K, 3M-ESPE, USA). Fifteen dentin discs (2mm thickness and diameter) were obtained from 15 third molars and were used in this study. After dentin disc permeability measurement, murine fibroblasts were grown, and the pulp surface of the dentinal disc was placed in direct contact with the cells immersed in DMEM. The experimental materials were positioned on the occlusal side of each dentinal disc until a uniform thickness of 2mm was obtained. Then, the discs were inserted into an artificial pulp chamber for 24 hours to assess the cytocompatibility. Afterwards, the moles of monomers leached from the specimens in DMEM were determined using HPLC. Statistical analysis was performed using ANOVA (p < 0:05). Under the experimental conditions, the toxic effect induced by all tested materials was slight or absent. Diurethane dimethacrylate and acrylic acid were not found in the culture media. It is concluded that all materials have good cytocompatibility consistent with the nondeterminability of the monomers released after polymerization....
Objective: To develop a kind self active resistance movement training equipment for cervical spine, so as to restore the dynamic balance of the front and back muscle strength of the cervical spine in order to correct the abnormal physiological radian of the cervical spine, thereby relieving the clinical symptoms. Methods: The air spring with adjustable strength was used to provide the power of resistance active movement, and the neurological training cervical audio-visual synthesis training software was used to automatically guide patients to perform resistance active movement training of the cervical spine. Thirty two patients with cervical spondylosis were enrolled for treatment, and SPSS26 was used to statistically analyze the VAS, Lovett muscle strength, head and neck range of motion and C2-3 vertebral body curvature before and after the treatment. Result: There were significant differences in posterior cervical muscle strength (Lovett), dizziness, shoulder and neck pain (VAS) and C2-3 vertebral curvature before and after training in 32 patients (p 0.001). Conclusion: The application of neurological training cervical vertebra self rehabilitation training instrument can effectively relieve clinical symptoms, restore head and neck range of motion, improve nape muscle strength, restore the dynamic balance of front and rear cervical muscle strength, and also can correct the abnormal physiological radian of the cervical vertebra....
Introduction: Short-term emergency ventilation is most typically accomplished through bag valve mask (BVM) techniques. BVMs like the AMBU® bag are cost-effective and highly portable but are also highly prone to user error, especially in high-stress emergent situations. Inaccurate and inappropriate ventilation has the potential to inflict great injury to patients through hyper- and hypoventilation. Here, we present the BVM Emergency Narration-Guided Instrument (BENGI) – a tidal volume feedback monitoring device that provides instantaneous visual and audio feedback on delivered tidal volumes, respiratory rates, and inspiratory/expiratory times. Providing feedback on the depth and regularity of respirations enables providers to deliver more consistent and accurate tidal volumes and rates. We describe the design, assembly, and validation of the BENGI as a practical tool to reduce manual ventilation-induced lung injury. Methods: The prototype BENGI was assembled with custom 3D-printed housing and commercially available electronic components. A mass flow sensor in the central channel of the device measures air flow, which is used to calculate tidal volume. Tidal volumes are displayed via an LED ring affixed to the top of the BENGI. Additional feedback is provided through a speaker in the device. Central processing is accomplished through an Arduino microcontroller. Validation of the BENGI was accomplished using benchtop simulation with a clinical ventilator, BVM, and manikin test lung. Known respiratory quantities were delivered by the ventilator which were then compared to measurements from the BENGI to validate the accuracy of flow measurements, tidal volume calculations, and audio cue triggers. Results: BENGI tidal volume measurements were found to lie within 4% of true delivered tidal volume values (95% CI of 0.53 to 3.7%) when breaths were delivered with 1-s inspiratory times, with similar performance for breaths delivered with 0.5-s inspiratory times (95% CI of 1.1 to 6.7%) and 2-s inspiratory times (95% CI of –1.1 to 2.3%). Audio cues “Bag faster” (1.84 to 2.03 s), “Bag slower” (0.35 to 0.41 s), and “Leak detected” (43 to 50%) were triggered close to target trigger values (2.00 s, 0.50 s, and 50%, respectively) across varying tidal volumes. Conclusions: The BENGI achieved its proposed goals of accurately measuring and reporting tidal volumes delivered through BVM systems, providing immediate feedback on the quality of respiratory performance through audio and visual cues. The BENGI has the potential to reduce manual ventilation-induced lung injury and improve patient outcomes by providing accurate feedback on ventilatory parameters....
Due to the ever-increasing proportion of older people in the total population and the growing awareness of the importance of protecting workers against physical overload during longtime hard work, the idea of supporting exoskeletons progressed from high-tech fiction to almost commercialized products within the last six decades. Sensors, as part of the perception layer, play a crucial role in enhancing the functionality of exoskeletons by providing as accurate real-time data as possible to generate reliable input data for the control layer. The result of the processed sensor data is the information about current limb position, movement intension, and needed support. With the help of this review article, we want to clarify which criteria for sensors used in exoskeletons are important and how standard sensor types, such as kinematic and kinetic sensors, are used in lower limb exoskeletons. We also want to outline the possibilities and limitations of special medical signal sensors detecting, e.g., brain or muscle signals to improve data perception at the human–machine interface. A topic-based literature and product research was done to gain the best possible overview of the newest developments, research results, and products in the field. The paper provides an extensive overview of sensor criteria that need to be considered for the use of sensors in exoskeletons, as well as a collection of sensors and their placement used in current exoskeleton products. Additionally, the article points out several types of sensors detecting physiological or environmental signals that might be beneficial for future exoskeleton developments....
Loading....